211 research outputs found

    QCD coupling below 1 GeV from quarkonium spectrum

    Full text link
    In this paper we extend the work synthetically presented in Ref.[1] and give theoretical details and complete tables of numerical results. We exploit calculations within a Bethe-Salpeter (BS) formalism adjusted for QCD, in order to extract an ``experimental'' strong coupling \alpha_s^{exp}(Q^2) below 1 GeV by comparison with the meson spectrum. The BS potential follows from a proper ansatz on the Wilson loop to encode confinement and is the sum of a one-gluon-exchange and a confinement terms. Besides, the common perturbative strong coupling is replaced by the ghost-free expression \alpha_E(Q^2) according to the prescription of Analytic Perturbation Theory (APT). The agreement of \alpha_s^{exp}(Q^2) with the APT coupling \alpha_E(Q^2) turns out to be reasonable from 1 GeV down to the 200 MeV scale, thus confirming quantitatively the validity of the APT prescription. Below this scale, the experimental points could give a hint on the vanishing of \alpha_s(Q^2) as Q approaches zero. This infrared behaviour would be consistent with some lattice results and a ``massive'' generalization of the APT approach. As a main result, we claim that the combined BS-APT theoretical scheme provides us with a rather satisfactory correlated understanding of very high and rather low energy phenomena from few hundreds MeV to few hundreds GeV.Comment: Preliminary revision. Typos corrected, comments and references adde

    Renorm-group, Causality and Non-power Perturbation Expansion in QFT

    Get PDF
    The structure of the QFT expansion is studied in the framework of a new "Invariant analytic" version of the perturbative QCD. Here, an invariant (running) coupling a(Q2/Λ2)=β1αs(Q2)/4πa(Q^2/\Lambda^2)=\beta_1\alpha_s(Q^2)/4\pi is transformed into a "Q2Q^2--analytized" invariant coupling aan(Q2/Λ2)A(x)a_{\rm an}(Q^2/\Lambda^2) \equiv {\cal A}(x) which, by constuction, is free of ghost singularities due to incorporating some nonperturbative structures. Meanwhile, the "analytized" perturbation expansion for an observable FF, in contrast with the usual case, may contain specific functions An(x)=[an(x)]an{\cal A}_n(x)= [a^n(x)]_{\rm an}, the "n-th power of a(x)a(x) analytized as a whole", instead of (A(x))n({\cal A}(x))^n. In other words, the pertubation series for F(x)F(x), due to analyticity imperative, may change its form turning into an {\it asymptotic expansion \`a la Erd\'elyi over a nonpower set} {An(x)}\{{\cal A}_n(x)\}. We analyse sets of functions {An(x)}\{{\cal A}_n(x)\} and discuss properties of non-power expansion arising with their relations to feeble loop and scheme dependence of observables. The issue of ambiguity of the invariant analytization procedure and of possible inconsistency of some of its versions with the RG structure is also discussed.Comment: 12 pages, LaTeX To appear in Teor. Mat. Fizika 119 (1999) No.

    Bound state approach to the QCD coupling at low energy scales

    Full text link
    We exploit theoretical results on the meson spectrum within the framework of a Bethe-Salpeter (BS) formalism adjusted for QCD, in order to extract an ``experimental'' coupling \alpha_s^{exp}(Q^2) below 1 GeV by comparison with the data. Our results for \alpha_s^{exp}(Q^2) exhibit a good agreement with the infrared safe Analytic Perturbation Theory (APT) coupling from 1 GeV down to 200 MeV. As a main result, we claim that the combined BS-APT theoretical scheme provides us with a rather satisfactory correlated understanding of very high and low energy phenomena.Comment: Revised version, to appear on Physical Review Letters. 7 pages, 2 figures, Revte

    Multicomponent Consideration of Electron Fraction of ECR Source Plasma

    Get PDF
    The development of physical model and mathematical simulation methods of electron and ion accumulation and production in the ECR ion source is presented. New equations represent electrons in the ECR plasma as a multicomponent media. In the result any kind of experimental or analytical electron distribution function can be approximated with a series of Maxwellian distributions with different temperatures and partial weights. Main positive plasma potential is introduced into consideration in addition to the negative potential dip for highly charged ion confinement. This potential regulates the loss rate of primary cold electrons from the plasma volume and completes the total picture of ECR plasma behavior. The first test of new model and code with recent experimental data of RIKEN 18 GHz ECR source has shown some new opportunities for investigators to study the ECR ion sources

    The massive analytic invariant charge in QCD

    Get PDF
    The low energy behavior of a recently proposed model for the massive analytic running coupling of QCD is studied. This running coupling has no unphysical singularities, and in the absence of masses displays infrared enhancement. The inclusion of the effects due to the mass of the lightest hadron is accomplished by employing the dispersion relation for the Adler D function. The presence of the nonvanishing pion mass tames the aforementioned enhancement, giving rise to a finite value for the running coupling at the origin. In addition, the effective charge acquires a "plateau-like" behavior in the low energy region of the timelike domain. This plateau is found to be in agreement with a number of phenomenological models for the strong running coupling. The developed invariant charge is applied in the processing of experimental data on the inclusive τ\tau lepton decay. The effects due to the pion mass play an essential role here as well, affecting the value of the QCD scale parameter Λ\Lambda extracted from these data. Finally, the massive analytic running coupling is compared with the effective coupling arising from the study of Schwinger-Dyson equations, whose infrared finiteness is due to a dynamically generated gluon mass. A qualitative picture of the possible impact of the former coupling on the chiral symmetry breaking is presented.Comment: 13 pages, 7 figures, revtex

    Analytic Perturbation Theory for Practitioners and Upsilon Decay

    Full text link
    Within the ghost-free Analytic Perturbation Theory (APT), devised in the last decade for low energy QCD, simple approximations are proposed for 3-loop analytic couplings and their effective powers, in both the space-like (Euclidean) and time-like (Minkowskian) regions, accurate enough in the large range (1--100 GeV) of current physical interest.\par Effectiveness of the new Model is illustrated by the example of Υ(1S)\Upsilon(1\mathrm{S}) decay where the standard analysis gives αs(MΥ)=0.170±0.004\alpha_s(M_{\Upsilon})=0.170\pm 0.004 value that is inconsistent with the bulk of data for αs\alpha_s. Instead, we obtain αsMod(MΥ)=0.185±0.005\alpha_s^{Mod}(M_{\Upsilon})=0.185\pm 0.005 that corresponds to αsMod(MZ)=0.120±0.002\alpha_s^{Mod}(M_Z)=0.120\pm 0.002 that is close to the world average.\par The issue of scale uncertainty for Υ\Upsilon decay is also discussed.Comment: 12 pages, 0 figures. Model slightly modified to increase its accuracy. Numerical results upgraded, references added. The issue of scale uncertainty is discusse

    Ten years of the Analytic Perturbation Theory in QCD

    Get PDF
    The renormalization group method enables one to improve the properties of the QCD perturbative power series in the ultraviolet region. However, it ultimately leads to the unphysical singularities of observables in the infrared domain. The Analytic Perturbation Theory constitutes the next step of the improvement of perturbative expansions. Specifically, it involves additional analyticity requirement which is based on the causality principle and implemented in the K\"allen--Lehmann and Jost--Lehmann representations. Eventually, this approach eliminates spurious singularities of the perturbative power series and enhances the stability of the latter with respect to both higher loop corrections and the choice of the renormalization scheme. The paper contains an overview of the basic stages of the development of the Analytic Perturbation Theory in QCD, including its recent applications to the description of hadronic processes.Comment: 26 pages, 9 figures, to be published in Theor. Math. Phys. (2007

    Coupling running through the Looking-Glass of dimensional Reduction

    Full text link
    The dimensional reduction, in a form of transition from four to two dimensions, was used in the 90s in a context of HE Regge scattering. Recently, it got a new impetus in quantum gravity where it opens the way to renormalizability and finite short-distance behavior. We consider a QFT model gφ4g\,\varphi^4\, with running coupling defined in both the two domains of different dimensionality; the \gbar(Q^2)\, evolutions being duly conjugated at the reduction scale QM.\,Q\sim M. Beyond this scale, in the deep UV 2-dim region, the running coupling does not increase any more. Instead, it {\it slightly decreases} and tends to a finite value \gbar_2(\infty) \,< \, \gbar_2(M^2)\, from above. As a result, the global evolution picture looks quite peculiar and can propose a base for the modified scenario of gauge couplings behavior with UV fixed points provided by dimensional reduction instead of leptoquarks.Comment: 8 pages, 4 figures,Version to match the one which (besides the Appendix) will appear in "Particles and Nuclei (PEPAN), Letters", v.7, No 6(162) 2010 pp 625-631. Slightly edited, one more reference and related numerical estimate adde

    Infrared enhanced analytic coupling and chiral symmetry breaking in QCD

    Get PDF
    We study the impact on chiral symmetry breaking of a recently developed model for the QCD analytic invariant charge. This charge contains no adjustable parameters, other than the QCD mass scale Λ\Lambda, and embodies asymptotic freedom and infrared enhancement into a single expression. Its incorporation into the standard form of the quark gap equation gives rise to solutions for the dynamically generated mass that display a singular confining behaviour at the origin. Using the Pagels-Stokar method we relate the obtained solutions to the pion decay constant fπf_{\pi}, and estimate the scale parameter Λ\Lambda, in the presence of four active quarks, to be about 880 MeV.Comment: 14 pages, 3 figures; to appear in J. Phys.

    Is there a Landau Pole Problem in QED?

    Get PDF
    We investigate a lattice version of QED by numerical simulations. For the renormalized charge and mass we find results which are consistent with the renormalized charge vanishing in the continuum limit. A detailed study of the relation between bare and renormalized quantities reveals that the Landau pole lies in a region of parameter space which is made inaccessible by spontaneous chiral symmetry breaking
    corecore